

Nikon A1R Confocal Microscope

A1R - STEP BY STEP INSTRUCTIONS CONTENTS PAGE

Page 6	 STEP 1	System On
Page 15	 STEP 2	Lens And Focus
Page 21	 STEP 3	Change From Eyes To Camera View
Page 24	 STEP 4	Choose A Laser Scanning Mode
Page 28	 STEP 5	Setting Up Initial Live View
Page 37	 STEP 6	Optimising Your Camera Settings (When You Have Too Much Signal)
Page 41	 STEP 6	Optimising Your Camera Settings (When You Don't Have Enough Signal)
Page 45	 STEP 6	Optimising Your Camera Settings (When There Is Too Much Background Signal – Use Offset)
Page 47	 STEP 6	Optimising Your Camera Settings (When There Is Too Much Background Noise – Use Averaging)
Page 49	 STEP 6	Optimising Your Camera Settings (Now Do Step 6 For Every Channel You Want To Use)
Page 52	 STEP 7	How To Avoid Bleed-through
Page 54	 STEP 8	Optimise Your Image Resolution
Page 74	 STEP 9	Acquisition Settings (Save To File)
Page 77	 STEP 9	Acquisition Settings (Order Of Acquisition Tabs)
Page 79	 STEP 9	Acquisition Settings (Lambda Λ Tab – Laser Channels)
Page 83	 STEP 9	Acquisition Settings (Z-stack)
Page 88	 STEP 9	Acquisition Settings (Large Image)
Page 91	 STEP 9	Acquisition Settings (XY Positions)
Page 93	 STEP 9	Acquisition Settings (Time)
Page 96	 STEP 10	At The End Of Your Session (Save And Shut Down Procedures)
Page 104	 MORE	More Advanced Instructions (Reuse Pervious Camera Settings)
Page 106	 MORE	More Advanced Instructions (Time Measurement)
Page 108	 !!!	KEY INSTRUCTIONS TO REMEMBER AND FOLLOW

Before Using The Facility...

To use the facility the individual must undergo training...

- Tour of the facilities
- T & C agreements
- First training session (2 hours)
- Second training session with user's samples (2 hours)
- Additional training sessions may be required
- Additional lens installation training (optional)
- Access to booking system: <u>http://ppms.eu/kcl-wohl</u>

Basic Principles Of A Confocal Microscope

Confocal microscopy improves image resolution by using a more focused excitation light source and allow users to observe more selective emitted light. Confocal microscopy bridges the gap between widefield and electron microscopy.

STEP BY STEP INSTRUCTIONS

The rest of this document will take you from focusing on your sample to optimising your image to what to do at the end of your session.

> Additional Information Slides

The blue slides contains additional information you might find helpful.

STEP BY STEP INSTRUCTIONS

STEP 1 System ON

System On

If the incubator is on do not turn the incubator off.

1. Switch on the A1R confocal system by following the numbered switches.

 Make sure the stage is empty before turning on the Microscope switch at the right, far back.

3. ALWAYS login to NIS-Elements Software before loading any sample, this checks if all systems are connected.

Nikon

•

•

٠

۰

After loading NIS Elements check you have the basic pads loaded...

- Optical Configuration (OC) Pad Channel settings
 - Acquisition Pad Save to file, λ , Z-stack, Large image, XY, Time
 - LUTs Intensity histogram (X=intensity, Y=log intensity), Contrast
 - Camera Settings Scanning Mode, Speed, Pinhole, Gain, Laser Power
 - Ti Pad lens changes, light path, perfect focus
- Scan Area Scan Direction, Zoom, Pixel Size

0

Logged in as chenliang (2m)

XY=[0.001, -0.001]mm, Z=-99.00

Use Mouse Wheel To Focus And Move In Live Mode

This will be set up for you in your 2nd training session.

Mouse wheel is used to zoom in when

FRAP_Stimulation \lambda Spectral 🔪 🔒 Image analysis 🔪 Acquisition 🔪 myAcquestion* 🖉 🔚 A1plus

0

Add to...and save software set up

Right click on blank space to add missing tabs and dock it in the docking panes at either side (but check they are not just hidden behind another tab first).

> Right click to save configuration (top) and layout (bottom)

XY=[0.001, -0.001]mm, Z=-99.00μ

Microscope and software set up and layout

Additional Information Slides...

Software Hidden Panels

Mouse left click hold, drag and drop to rearrange docking pane.

Software Layout: Camera Settings

STEP BY STEP INSTRUCTIONS

STEP 2

Lens And Focus

Checking Lens for Damage and Cleanliness

Make sure you are on brightfield eyes and the illumination is on. Check the lens for any damage by putting the toggle beneath the eyepiece to the LEFT and zoom on the lens using the button here.

ALWAYS put the toggle back to the RIGHT

after you're done and before you start to focus.

Cleaning OIL Lens

- 1. Wipe away any excess oil with dry lens tissue (normally after your session)
- Wrap lens tissue around your finger and soak up some Isopropanol and clean lens from centre outwards (REPEAT 3 TIMES)
- 3. Clean once more with dry lens tissue
 - During your session if you are switching between oil/dry lenses, just wipe away excess oil on the lens and your slide, lower your objectives down, before switching.

Changing Lens

ALWAYS

Lower the lenses as far as they can go before inserting the stage and/or clicking on another lens.

To lower lens...

- Rotate wheel clock-wise
- Bottom = this number no longer reduces
- Be careful zero doesn't mean it's at the bottom

Lower the lenses between changing slides.

Load your sample into the stage

Make sure to mount your sample 5mm away from the edge of the slide! You cannot image too close to the edge of the slide, it can damage the lens!

Focus

ALWAYS put the toggle back to the RIGHT after you're done and before you start to focus.

DRY LENS ONLY (20X Air and 40X Air)

- Use Wheel and joystick on the control pad to adjust and focus.
- Make sure you are on the specimen.
- Focus indicator comes when it detects a reflective surface. (Do not rely on numbers as
- the lowest setting is not always set to ZERO, to set the stage XZ to $0\mu m$ press here.)
- When the green light comes on STOP moving up immediately (lower it back down again if needed, otherwise the focal plane might be passed).
- Switch coarse XZ to fine (Z button), coarse XY to fine (twist the joystick)
- Select one of the "EYE" options in the software.
- Turn on and adjust the brightfield or Epi-fluorescence illumination intensity.
- Find focus using eye piece.

OIL LENS

PV 20x Z: -56.150u

• Focus indicator does NOT work for oil/water lens.

- Wheel upwards on coarse ONLY until lens comes in contact with oil.
- Switch coarse XZ to fine, coarse XY to fine (twist the joystick)
- Find focus using eye piece.
- Find focus on camera.

STEP BY STEP INSTRUCTIONS

STEP 3

Change from Eyes to Camera View

From this point forward we will be adjusting things on the computer screen so we need to work in camera mode instead of looking down the eye piece.

Remain on STOP setting.

INS-Elements AR [Current user: chenliang] - [Frozen]		NIS-Elements AR [Current user: chenliang] - [Frozen]
Eile Edit Acquire Calibration Image Content on Measure Reference Ma	Click on	<u>File Edit Acquire Calibration Image ROI Binary M</u> easure Refere <u>n</u> ce M File Edit Acquire Calibration Image ROI Binary Measure Refere <u>n</u> ce M File Edit Acquire Calibration Image ROI Binary Measure Refere <u>n</u> ce M File Edit Acquire Calibration Image ROI Binary Measure Refere <u>n</u> ce M File Edit Acquire Calibration Image ROI Binary Measure Refere <u>n</u> ce M File Edit Acquire Calibration Image ROI Binary Measure Refere <u>n</u> ce M File Edit Acquire Calibration Image ROI Binary Measure Refere <u>n</u> ce M File Edit Acquire Calibration Image ROI Binary Measure Refere <u>n</u> ce M File Edit Acquire Calibration Image ROI Binary Measure Refere <u>n</u> ce M File Calibration Image ROI Binary Measure Reference M File Calibration Image ROI Binary M File Calibration Image ROI Bin
OC Panel ×	'myConfocal'	OC Panel ×
DAPI (eyes) CFP (eyes)		DAPI (eyes) CFP (eyes)
Red (eyes) Red (eyes) Red (eyes)		Red (eyes) Red (eyes) Red (eyes) Red (eyes) Red (eyes)
Confocal (DAPI_GFP_RFP)	This moves from	Confocal (DAPI_GFP_RFP)
Image: Construction Image: Construction Image: Construction Image: Construction	eyes to camera.	Image: my OCs Image: myConfocal (CFP_YFP) Image: myConfocal (CFP_YFP) Image: myConfocal (CFP_YFP) Image: myConfocal (CFP_YFP)

STEP BY STEP INSTRUCTIONS

STEP 4

Choose A Laser Scanning Mode

Galvano: Precision point laser scanning

Galvano vs Resonant (with 16X averaging)

Galvano

Resonant

(with 16X averaging)

2.1 Seconds

1.0 Seconds

Resonant

(no averaging)

When switching from Resonant to Galvano, the software resets these settings every time, so please do the following:

Select Pixel Dwell
 2. 1024
 3. 1.1

STEP BY STEP INSTRUCTIONS

STEP 5

Setting Up Initial Live View

»		
A1plus Compact GUI $ imes$	Ti Pad 🗙	
		Galvano
Scan Capture	Find	Resonant
ö Eye Port	AG	Skip 2x 🔻
Remove Interlock		
Scan Size: 512 🝷	🗹 Keep	o Pixel Brightness 🔜
Normal Ø 2x 🕶 🚬	2x -	
Ch Series 🔻 Ch.Setup	[1]	->[]->[]
Fps: 30.0; Frame Ti	me: 33.3 ms	Settings •
Pinhole		- 1.2 1.2 AC
AU calculated fo	or: 405.0 🔻	, 17.9 μm
	DU	4 SD VF

Set your Pinhole size to 1.2AU

Click To set pinhole to

recommended starting point.

DAPI			Laser 405	.4 nm 0.0
HV				70
Offset		0		0
• 405				5.00
🗹 Alexa -	488 water	•	Laser 487	.6 nm 0.0
HV(G)	0			1
Offset		0		0
• 487			,	1.00
	U			
Alx568			Laser 561	.7 nm 0.0
Alx568	0		Laser 561	.7 nm 0.0
HV(G) Offset		0	Laser 561	.7 nm 0.0
HV(G) Offset		0	Laser 561	.7 nm 0.0 1 0 1.00
Alx568 HV(G) Offset • 561 Alx647		0	Laser 561 Laser 640	.7 nm 0.0 1 0 1.00
Alx568 HV(G) Offset • 561 V Alx647 HV			Laser 561	.7 nm 0.0 1 0 1.00 0.0 nm 0.0 70
Alx568 HV(G) Offset • 561 V Alx647 HV Offset			Laser 561	.7 nm 0.0 1 0 1.00 0.0 nm 0.0 70 0

myConfocal

1) First input these initial setting numbers into your channel set up and <u>update the myConfocal</u>

button. (This gives you a safe starting point)

- 2) Choose a single channel you want to see first.
- 3) Uncheck all the other channels but that one.

e.g. 488 channel

DAPI	Laser 405.4 nm 0.0
🗹 Alexa 488 water	🕩 Laser 487.6 nm 🛛 0.0
HV(G)	1
Offset	0 0
• 487	1.00
Alx568	Laser 561.7 nm 0.0
Alx647	Laser 640.0 nm 0.0

To visualise

your image...

- 1. Click on auto contrast
- 2. Slide this bar to the top
- Drag the contrast line towards the left.

- 4. Starting to see something on the screen...
- 5. Now bring it into focus(hover mouse over image and use mouse wheel to change focus.)

Once in focus STOP scanning to preserve your sample.

While you are changing focus, your LUTs will change accordingly...

You may find you have too much or too little signal...

So now we move on to optimising your camera settings to get your signal just right...

LUTs

Additional Information Slides...

LUTs And Contrast

LUTs explained.

- Changing LUTs to visualise your sample better does not change your raw data (signal intensity).
- This means when you open your image again in e.g. ImageJ, LUTs will not be applied.
- If you change LUTs before quantitative analysis, it is recommended to save the LUTs and apply it to all comparable images.

Why do we need to change the contrast?

The camera in this microscope captures shades from 0 to 4000, initially the LIVE window shows you all these different shades, but the signal from this sample only reach roughly 2500 therefore we only need to work within the 0 to 2500 range.

Auto contrast brings the contrast into a range for you to better visualise your sample.

LUTs in more detail...

values, of which you should not go over 50,000). Y axis – log intensity scale
STEP BY STEP INSTRUCTIONS

STEP 6

Optimising your camera settings

...when you have too much signal

Do I need to optimise my settings?

How to tell if you have too much or not enough signal?

When your LUTs graph is filled up like this, you may be oversaturating your sample.

Turn on your oversaturating indicator by selecting complementary colour in the drop down.

IS-Elements AR [Current user: chenliang] - [Live]

Oversaturation!

Oversaturation means the camera is picking up too much signal, and the camera can no longer determine the actual intensity of your signal, it just knows that sample is 'bright'.

This can cause you problems during analysis, because you won't have intensity information.

To fix oversaturation...

- 1. Reduce the Gain (HV) and laser power to reduce oversaturation.
- 2. Press ENTER to confirm change.
 - 3. Go to live view again to check.

4. Update changes in myConfocal

STEP BY STEP INSTRUCTIONS

STEP 6

Optimising your camera settings

...when you don't have enough signal

How much signal is enough signal?

That really depends on what you want to measure...

Hover your mouse over the background to measure background intensity Then over over something you want to measure, DAPI for example. If the difference in intensity is under 50, its probably not good enough for accurate analysis.

Are you able to count DAPI clearly with this intensity?

120

Look at the actual intensity reading here.

DAPI

0.41 µm/px

To increase signal...

- 1. Increase Gain (HV) and laser power. (In SMALL increments for green and red channels)
 - 2. Press ENTER to confirm change.
 - 3. Go to live view again to check.
 - 4. Update changes in myConfocal

How much to increase by?

'G' means be gentle!

For green and red channels increase

gain and laser power by no more

than 5 each time.

DO NOT Increase HV above 50 !!!

For DAPI and far-red try changing by no more than 10 at a time.

STEP BY STEP INSTRUCTIONS

background <u>SIGNAL</u>

STEP 6

Optimising your camera settings

...when there is too much background <u>SIGNAL</u>

use OFFSET.

background NOISE

OFFSET...

helps to adjust the background voltage level to appear black on the computer screen, offset does this by **shifting** the entire amplitude of the signal without altering actual amplitude. e.g. when offset -5 is applied to amplitude voltage 5 - 15 (figure 5a) it will shift to voltage 0 – 10 (figure 5b) but the actual difference between the voltage remains at 10 volts difference. Gain can then be applied to amplify the amplitude of the voltage (figure 5c).

Gain and Offset Adjustment in Confocal Microscopy

Image modified from: https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/confocal/pmtintro/

	🔶 Laser 405.0 nm	0.0	DAPI	→ Laser 405.0 nm 0.0	DAPI	➡ Laser 405.0 nm0
HV			ну	50	ни	80
Offset	[Offset		Offset	5
 405 			◆ 405 ·····	ND 3	◆ 405 ·	ND 3

STEP BY STEP INSTRUCTIONS

background <u>SIGNAL</u>

STEP 6

Optimising your camera settings

...when there is too much background <u>NOISE</u>

use AVERAGING.

background NOISE

- Takes multiple images and averages them out.
- Beware 8X averaging increase your imaging time by 8 folds.
 - Remember to update

myConfocal

Without Averaging

CFP YFP Imaging

ŎĂ

Ø

×

2

Confocal (CFP YFP)

myConfocal (CFP_YFP)

ment: ND Acquisition

Filename: 08012019_002.nd2

Custom Metadata

Setup

Load *

ND Acquisition × Z Intensity Correction ×

🗌 🛈 Time 🔲 🛗 XV 🔲 🖓 Large Image 🔲 🍯 Z 🖾 🌮 λ

Save . Remove

myConfocal

🔹 add 🛛 🗇 🚹 🕴 🗙 🗞

Run Z Cort

- |+

G: 1.00

With Averaging

STEP BY STEP INSTRUCTIONS

STEP 6

Optimising your camera settings

...now do STEP 6 for every channel you want to use.

Optimise your camera settings for each channel you want to use during imaging.

- 1) While you are on STOP.
- 2) Check the box of another channel you want to use.
- 3) Uncheck any other selected channels
- 4) i.e. Check GFP channel then unselect DAPI in this case
- 5) Input the initial gain and laser power!!! If you haven't done so at the beginning of your session.
- 6) Be very GENTLE with your GREEN and RED channels.
- 7) Click on LIVE and continue to optimise by repeating STEP 4 for each channel you want to use.

A Helpful Table: Camera Settings – What Does It Do?

Camera Settings	Concept	Pro	Con	When To Change This
Averaging	The camera takes multiple images and form an averaged image.	Reduce noise	• Increase acquisition time drastically	• Increase when your image have lots of noise.
Binning	Combines the charges (signal) from adjacent pixels to form one "super" pixel.	 Faster read out Increase signal to noise ratio 	• Trades resolution for sensitivity	• Increase when there is very little signal from your sample, causing low intensity in your image.
Exposure	Longer exposure means the camera has longer to collect the emitted light. Ideally exposure time should be just below the saturation threshold.	• Detector receive more signal from your sample	 Phototoxicity Bleaching Fade Acquisition time 	 Increase when signal captured is not enough to give you the intensity level you need. Decrease to preserve your sample.
Gain	Controls how much the signal is amplified before reaching the detection system. Increased gain makes photomultiplier tube plates more negatively charged = more amplification.	 Amplifies signal without causing bleaching or phototoxicity 	• Gain increases noise	 Increase when signal is low and you have sensitive samples. Decrease if you have too much noise.
Laser Power	The % power of a very photon-dense light source, focused in a very tight beam.	 Penetrates deeper into sample Increase signal 	BleachingHeatingHarmful to sample	 Increase when you have thick samples or need more signal. Decrease if you have sensitive sample, especially live samples.

STEP BY STEP INSTRUCTIONS

STEP 7

How to avoid bleed-through

In this example DAPI signal is bleeding into the GFP channel.

Channel Series

This indicated you can scanning all channels at the same time, this is quick but can give false signal if bleed through occurs. This indicated you are scanning each channel individually, this avoids bleed though but is a slower scanning method. If DAPI is the only channel bleeding through, then you can scan DAPI alone and scan all other channels together to save time.

STEP BY STEP INSTRUCTIONS

STEP 8

Optimising your image resolution.

Up until now I've gone over how to change your camera settings to change the amount of signal intensity you can get. But the amount of signal and how much detail you can see within that signal are two different things.

Confocal microscopes can provide high resolution images, so here are some concepts to help you understand what actually changes image resolution and also what you need to change on the microscope and in this software to get the best possible image resolution.

But keep in mind, this is just a demonstration and when you come to do your own imaging, you'll have to consider what analysis you want to do and decide on how much image detail or resolution you actually need. Because the higher the resolution generally the more bleaching and the longer it takes to image. To optimise your resolution you have 3 decisions to make...

1. Choosing a suitable lens and immersion medium

2. Set pinhole size (recommended: equal to or smaller than 1.2 AU)

3. Set sampling frequency (Zoom and Z stack step size)

Resolution

Additional Information Slides

Please read the following additional information slides to familiarised yourself with these microscope concepts.

Resolution is...

The ability to distinguish separate objects.

The highest resolution you can achieve is called the resolution limit, basically it's as close as 2 objects can get and still be visualised as 2 separate objects.

This limit exists because...

Light coming from a very small point spreads out in Airy Disks

When another object overlaps the first peak intensity ring, the drop in intensity between the two objects is enough for us to categorised them as 2 different objects.

Lateral (XY) Resolution = 0.61 λ / NA Axial (XZ) Resolution = 2 n λ / NA²

Rayleigh Criterion

Lateral (XY) Resolution = 0.61 Å / NA Axial (XZ) Resolution = $2 \text{ n } \text{ } \text{ } \text{ } \text{NA}^2$

E.g. 0.61 x 480nm / 0.8 = 366nm 0.61 x 480nm / 1.4 = 209nm

Changing the Numerical Aperture changes resolution!

Numerical aperture (lens dependent) NA is a measure of a lens' ability to gather light and detail. Different lenses have different Numerical apertures

The closer the lens is to your sample and the better matched your immersion medium means you'll have a higher NA and can gather more detail from your sample. Higher NA = better resolution

Numerical Aperture (NA) = $n \times sin (\alpha)$

The immersion medium's refractive index:

Air = 1

lens and sample.

Angle between

Water = 1.33Glycerine = 1.47

Immersion Oil = 1.51 = Glass (coverslip)

Z Resolution = 2 n λ / NA² is affected further by refractive index.

Optimise your image resolution by...

1. Choosing a suitable lens and imaging medium

2. Set pinhole size (recommended: equal to or smaller than 1.2 AU)

3. Set sampling frequency (Zoom and Z stack step size)

Airy disk and numerical aperture affect all microscope machines so what makes confocal systems higher resolution than widefield?

Optimise your image resolution by...

1. Choosing a suitable lens and imaging medium

2. Set pinhole size (recommended: equal to or smaller than 1.2 AU)

3. Set sampling frequency (Zoom and Z stack step size)

After optimizing the NA and pinhole size, the next thing to consider is how to actually take the image...

You can have the most powerful lens and smallest pinhole but if you don't set up sampling frequency correctly, then you won't capture enough detail to end up with a high resolution image.

Sampling frequency (pixel and step size dependent)

- When your specimen emit fluorescent light, it is picked up by the camera and gets translated into digital pixels.
- When we decide on sampling frequency we are telling the microscope how many pixels we want to record within a fixed distance.
 - For optimal resolution, that fixed distance would be the smallest resolution limit you can achieve (lens and pinhole).
- If you only sample once, that is unreliable, like if you ran an experiment without any repeats.
 - So you need to sample more than once, within your resolution limit.

A standard sampling frequency can be worked out using the Nyquist Limit (N) equation.

N = 0.3 λ / NA

Most researchers uses the Nyquist limit equation to works out a sampling frequency of 2.2, which means you need to sample 2.2 times within your resolution limit (0.61 λ / NA) to be sure the signal you are sampling is real.

So how do you apply this 2.2 times sampling frequency...

So how do you apply this 2.2 times sampling frequency...

Lateral (XY) Resolution
=
$$0.61 \lambda / NA$$

Axial (XZ) Resolution = $2 n \lambda / NA^2$

Z stack step size

Lateral (XY) sampling frequency can be changed using the ZOOM option.

The software knows the lens and pinhole size you are using, so it calculates your resolution limit and Nyquist limit for you.

All you need to do is click on Nyquist XY for recommended pixel size. The correct Zoom will be automatically applied.

You are at your resolution limit, so even if you zoom in even further, you won't be able to distinguish any more detail from your specimen.

Axial (Z) sampling frequency can be changed using the Z stack step size option. You can apply this during your acquisitions set up later...

The software again calculated your resolution limit for you. All you need to do is click here to apply the recommended step size during Z stacking.

You don't have to use the recommended step size...

What happens when you under-sample

Under-sampled Image

Actual Image

Aliasing occurs when signal becomes indistinguishable and create distortions.

- Under-sampling can save time and minimise bleaching but you do loose information.
- To under-sample, type in a step size bigger than the recommended, E.g. in this case 0.1µm

What happens when you oversample

- You are capturing more information than you need when you oversample.
- But computer algorithms can use this information to 3D Deconvolve, digitally relocate signals for higher resolution images.
- To oversample, type in a step size smaller than the recommended, E.g. in this case 0.05µm

3D Deconvolution

Image copied from http://www.biology.wustl.edu/imaging-facility/specs-deltavision.php
Once everything is optimised, remember to save the camera settings in myConfocal

Moving on to Acquisition Settings...

STEP 9

Acquisition Settings

... Save to File

Set Up File Path (SAVE)

1)Check Save to file option

2)Go to Browse and select C:\Users\Nikon\Pictures

3)Create/find your folder, set up new folder for this session if needed.
4)Recommended file name: Experiment_Name_Date_001
5)Finished, anytime you press "Run now" a new file will be automatically saved in the nd2 format.

If you don't put "_001" at the end of the first file name, the software will automatically name your second image_001, then _002, _003 for subsequent images.

Automatically saved if 'Save to File' is ticked

Run VS Capture

Not automatically saved

After 'Run now' if you make changes to your image (such as adding ROIs) then save this 'new' image by going to file and 'SAVE AS' so you don't overwrite your raw data.

STEP 9

Acquisition Settings

... Order or acquisition tabs

Fastest acquisition tab sequence

The Software will prioritise the tab on the RIGHT. Do not put 'Large Image' tab on the right. Tick the box for all acquisition functions you want to use.

ND Acquisiti	ion × Z Intensity Cor	rection ×					
Experiment:	ND Acquisition						
λ:		_			_		
Save to							
Path:	C:\Users\Nikon\Picture	s\Chen				Browse	
	08012019_006.nd2				Recor	d Data	
Custom	Metadata						
	eriment 🔻 🕇 Timing						
🗌 🕑 Time	🗌 🇱 XY 🔲 🛱 Lar	ge Image 🔲 🗐	z 🗹 🔗				
Setup					00	+ + × >	*
Opt. Conf.		Name		Comp. Cold	or	Focus Offset	
🗹 myConfo	cal 💌	Alexa 488 water					X
	tive Shutter during Filter	Change					
						Advanced >>	
Load 🔻	Save - Remove		-√ ² ∎ R	un 7 Corr		Run n	ow

STEP 9

Acquisition Settings

... Lambda (laser channels)

b) (a 43, 🔲 🕑 🖸 🖄 🎼 💆 🛛 💆 🖳 OC Panel > = =

Nikon

Assign Current Settings

🔹 Add 🛛 🗇 🛉 🐺 🏷

Run now

643

4000

3500

Run Z Corr 1 time loop

G: 1.00

NIS-Elements AR [Current user: chenliang] - [Frozen]

Confocal (DAPI_GFP_RFP) CEP YEP Imaging

myConfocal (CFP_YFP)

Experiment: ND Acquisition

ND Acquisition × Z Intensity Correction

Path: C\Lisers\Nikon\Pictures\Cher

Save 🔻 Remove 🕶

Filename: 08012019 002.nd2

Custom Metadata

Setur

Z

2

🔣 V3 V4 🗶 🔎 🛪 🎦 🗸 🎎 🚼 😳 🛛 🕂 🐼 🖽 1:1 🕀 📿 147% 🗸

_ = ×

Your currently saved channels, when you press 'Run now' these are the channels you'll image.

To change/add channels

DAPI Alexa 488 water Alx568 Alx647 Cus

C Settings

17.9 µm

aser 405.4 pm

A1plus Compact GUI × | Ti Pad ×

Normal Ø 2x - 2x -

DAP

AU calculated for: 561.7 -

1000 1500 2000 2500 FRAP _Stimulation Spectral 🔒 Image analysis Acquisition myAcquisition* 10

📲 🛱 🥽 🗠 🕺 🙆 📴

	Comocar		'_'`'/	<u>`</u>				
ND	CFP YFP Im	aging						
	Confoc	al (CFP_	YFP)					
Υ.A	🗆 my OCs							
	myConf	ocal (CFP	YFP)	▲ myC	<u>Confocal</u>	•		
	ND Acquisit	ion × Z	ntensity Cor	rection ×				
ŎĂ	Experiment:	ND Acquis	tion					
調査								
		-1						
LZ.	Save to	File						
FA	Path:	C:\Users\N	ikon\Picture	s\Chen				Browse
		00040040					Record Da	ata
L (Filename:	08012019_	JU2.nd2				Record De	
 女	Filename:	Metadata	J02.nd2	NT	•		Necora De	1
」 女 子	Custom	Metadata	JUZ.nd2	New	setti	ngs up	odat	ed.
8 🛃 🕅	Custom	Metadata	Timin <u>c</u>	New	setti	ngs up	odat	ed.
	Filename: Custom Order of Exp	Metadata beriment 🔻	Timin <u>c</u>	New	setti: z ☑ & λ	ngs up	odat	ed.
P 🛃 🛃 🚺	Filename: Custom Order of Exp Setup	Metadata	Timin <u>c</u>	New	setti:	ngs up	odat	ed. ↓×≫
「「「」 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Filename: Custom Order of Exp Setup Opt. Conf.	Metadata periment ▼	Timin <u>c</u>	New	setti: z ☑ & λ	ngs up	odat	ed.
🔅 🛃 🖏 🥌 🕅	Filename: Custom Order of Exp Setup Opt. Conf.	Metadata Deriment 💌	Timin <u>c</u>	New	setti:	ngs up Add	odat	ed.
「 🗱 🛃 🖏 🛃 以 🛿	Filename: Custom Order of Exp Setup Opt. Conf.	Metadata Deriment 💌	Timin <u>c</u>	Name DAPI Alexa 488 wat	setti: z 🗹 8° λ	ngs up	odat	ed.
🕶 🔅 🛃 🖏 🗲 더 [Filename: Custom Order of Exp Setup Opt. Conf.	Metadata periment 💌	Timin <u>c</u>	Name ▼ DAPI Alexa 488 wat Alx568	setti: z 🗹 8 [°] λ	ngs up Add Comp. Color	odat	ed.
🛃 🛟 🚮 🖏 🛃 🕅	Filename: Custom Order of Exp Setup Opt. Conf.	Metadata	Timin <u>c</u>	Name ▼ DAPI Alexa 488 wat Alx568 Alx647	setti:	ngs up	odat	ed.
社 🛃 🖏 🛃 社 🛛	Filename: Custom Order of Exp Time Setup Opt. Conf. MyConfo	Metadata beriment ▼	Timin <u>c</u>	Name ▼ DAPI Alexa 488 wat Alx568 Alx647	setti:	ngs up Add Comp. Color	odat	ed.
江 🛃 😭 🚰 🔂	Filename: Custom Order of Exp Time Setup Opt. Conf. MyConfo	Metadata beriment ▼ Cal	Timin <u>c</u>	Name DAPI Alexa 488 wat Alx568 Alx647	setti:	Add	odat	ed.

STEP 9

Acquisition Settings

🗌 🕑 Time 🔲 🇱 XY 🔲 🛱 Large Image 🔲 🔗	λ ⊠ ≘	ž		
Top 2858.53 Reset 2853.13 Bottom 2853.13	abs abs			
Step: 1.025 µm + 1.025 µm 7	Steps	Range:	5.40	
		Relative I	Positions:	
Bottom: 2853.13 µm Top: 2858.53		тор:	+5.40	
Z Device: Nikon A1 Piezo Z Drive 🔹 💆 F	Piezo 🔻	Bottom:		
Close Active Shutter during Z Movement Direction Use HW sequencer	n: 💿 Bo 🔘 To	ttom to To p to Botto	op m	
				Advanced >>
Load Save Remove	🛷 🖪 Ri	un Z Corr		p 🤣 Run no

.... Z stack

Z stack Basic Options

Set top and bottom: use mouse wheel to focus and define the exact range of your Z stack.

Set Middle: use mouse wheel to find the mid point of your Z focus and set equal distance above and below the focal plane. (Useful if your sample is symmetrical along the Z axis)

Too

Bottom

Z Device: MCL NanoDrive PiezoZ Drive

Close active Shutter during Z Movement Direction:

Reset

2911.95

Step: 0.195

Bottom:

Asymmetrical: find focal plane and then set different distances above and below. (Useful for ______ like cells)

Ranget

Too:

Intiom

Bottom to Top

Top to Bottom

Relative Positions:

-0.07

-7.68

um

LIM

2919.56 abs

2915.76 abs

2911.95 abs

Piezo

2919.55

Steps

Step Size

- You can set step size or number of steps.
- Use recommended step size to capture all the information.
- Fewer steps than the recommended is called under-sampling and you may loose information.
- More steps than the recommended is called over-sampling (typed in here) which is required for 3D deconvolution.

Z stack View Modes

In 3D rendering you have different rendering modes.

STEP 9

🔲 🕑 Tir				28	Large Im	nage	S 80						
Scan Area													
					🗧 fields								
0					🔹 mm								
۲	Pattern												
Stitching:													
\odot	Stitch			Use	All Chan	nels					for Stit	ching	
				🗌 Prog	gressive F	Registra	ation						
	Do Not	Stitc											
Overlap:													
Close	Active (Shutt		during	Stage Mo	ovemen							
													Advanced >>
Load	-	31/0	Ţ	Ramo	wo T			~ * •	Run 7	Corr			Pup no

Acquisition Settings

... Large Image

PB

🖶 🛱 🔚 🔤 🏌

-

STEP 9

Acquisition Settings

П (^b Time 🗹 🏭 XY Г	T 🖫 Large Ima	ae Γ & λ	∏≋z		
Points Move Sta	age to Selected	Point	Add 🕈	00	• X &
Point Name	X [mm]	Y [mm]	Z [µm]		PFS
∀ #1	12.631	-1.321	2853.15		
✓ #2 ->			2853.15 <-	Offset All X,Y,Z	N/A
Include Z 🗌 Relative	e XY	Opti	mize Load	Save C	ustom
Z Device: Ti ZDrive	-		Close Active S	hutter during Sta	ige Movemen
				Ac	lvanced >>
Load - Save - F	Remove 👻	~	Run Z Corr	1 time loop	📌 Run now

... XY Positions

STEP 9

Acquisition Settings

Time Schedule			+ Ad	d 🗇 Ć] ++ x ≫			
Phase	Interval		Duration		Loops			
⊻ #1	1 sec	•	5 sec	-	6			
Close Active Shutte	r when idle		🗌 Perf	orm Time N	Aeasurement (0 ROIs)			
					Use HW sequencer			
				Events	Advanced >>			
Load 🔻 Save 🔻	Remove ▼		Run Z Corr	1 time lo	op 🔗 Run now			

... Time

Continue with your imaging...

STEP 10

At the end of your session

... Save your software settings... Shut down procedure

FRAP_Stimulation ______ Spectral _____ Image analysis _____ Acquisition ______ myAcquisition* / _____ Alplus

Ĭ

Save software set up

for future sessions ...

Right click to save configuration (top) and layout (bottom)

A1plus Compact GUI × Ti Pad ×
Nosepiece
10x 20x 40x 60x 40x 100x
1 2 3 4 5 6 🔎
Escape
Escape Z
Light Path PFS
E100 On Memory Recall
L100 R100 Offset: L 5041
L80 Dichroic Mirror:
Z Drive
Accuracy[μm]:
Snutters
Filters
Turret1
Condenser Zoom
5 DICN2 🔽 🔽 1.00x 💌
Configure
A1plus Scan Area × XYZ Navigation ×
Divel size: 0.31
Pixel size: 0.21 Nyquist XY
Width: 1024 Height: 1024
Dwell time: 0.05 us
Dival size: 0.21 um Ontical resolution: 0.22 um
7 step size: 0.15 µm Optical resolution: 0.23 µm
2 step size, o. to pill Optical sectioning, 0.47 pill

💹 - 🔰 🗚 🗛 🗛

XY=[0.001, -0.001]mm, Z=-99.00µm, Pie

logout

=

Shut down procedure

🛋 🛱 🚞 😐 🤌 🤹 😰

Check the booking schedule!

If no one is using the system within 2 hours, shut down the system.If someone is booked on within 2 hours, leave the system on.

Transfer Data To Shared Drive (1 of 3)

Open file Find your saved data in Pictures Right click on Shared Drive (WCIC) and select Open in new window.

2

You need to login to this pop-up window, user name is normally: kclad\k number DO NOT click on remember my credentials

3

In the Network drive, open the Nikon_A1R folder 5 In the Nikon_A1R folder

open your personal folder

4 🛤 Computer			
Local Disk	(C:)		
	ERY ((E:)	
🖻 🧰 datadriv	E1 (F:	:)	
▷ 🙀 wcic (\\10	1 20 1	1 16) (7.)	
		Expand	
a 📬 Network		Restore previous version	ns
DESKTOP-		Disconnect	
🛛 🖳 IOPOPTIXI		Open in new window	
🖻 🖳 NIKON-A1			
🖻 🖳 NIKON-HI		Сору	
🛛 🖳 NIKONI-SI		Rename	
🖻 🖳 NIKONSD		New	•
🛛 🖳 OPERA010		INCOV	, , , , , , , , , , , , , , , , , , ,
Div 🖳 OSIS		Properties	
⊳ 🖳 PC07110			

Transfer Data To Shared Drive (2 of 3)

• DO NOT USE USBs ON ANY COMPUTERS IN THE MICROSCOPE ROOMS!

- Drag and drop the files you saved in this session.
- The Shared Drive can be accessed from the workstations (where you can use USBs), or your personal computers, from there

please BACK-UP your data.

🚱 🕞 🗕 📕 🕨 Computer 🔸 DATADRIVE1 (F:	:) Chen 091018 Practice 100X	▼ ⁴7 S	Search 091018 Practice .	100X 🔎	📀 💽 – 📔 🕨 Computer 🕨 wcic (\\10.139	.11.16) (Z:) 🕨 Nikon_Spinning_Disc 🕨 Chen 🕨	👻 🍫 Search Chen	Q
Organize 🔻 🛛 🜆 Open with NIS-Elements	Burn New folder			: • 🔟 🔞	Organize 🔻 Burn New folder			:= • 1 0
🔆 Favorites	Name	Date modified	Туре	Size	🛠 Favorites	Name	Date modifie	Size
🧮 Desktop	Slide3MouseKidney.nd2	09/10/2018 10:36	LIM images	2,036 KB	🧮 Desktop	🔃 Spinning Disk Screen Prints	02/10/2018 1 🔨 🐴 🔿 arosoft Power	rP 305 KB
🐌 Downloads	Slide3MouseKidney001.nd2	09/10/2018 10:49	LIM images	780 KB	\rm Downloads	🚳 Thumbs	09/10/2018	8 KB
🔄 Recent Places	Slide3MouseKidney002.nd2	09/10/2018 10:51	LIM images	20,908 KB	🕮 Recent Places	🌗 091018 Practice Slide 3 Mouse Kidney	09/10/2018 1147 File folder	
🝊 OneDrive	📾 Slide3MouseKidney002_ROI_BG.nd2	09/10/2018 11:34	LIM images	20,824 KB	le OneDrive		+ Copy to 09101	18 Practice Slide 3 Mouse K
 □ Libraries □ Documents □ Music □ Pictures □ Videos □ Computer ▲ Local Dick (C:) 					 □ Libraries □ Documents □ Music □ Pictures □ Videos 1 Computer 1 Local Dick (C) 			
HP_RECOVERY (E:)					HP RECOVERY (E:)			
DATADRIVE1 (F:)					DATADRIVE1 (F:)			
🖵 wcic (\\10.139.11.16) (Z:)					🖙 wcic (\\10.139.11.16) (Z:) 🌇 Aurora_Australis			
📬 Network					🌗 Aurora_Borealis			
IN DESKTOP-4U0A8VQ					🌗 Backups			
IMPOPTIXE					🍌 Leica_SP5			
III NIKON-A1					🍌 Nikon_A1R			
🖳 NIKON-HP					🍌 Nikon_iSIM			
🖳 NIKONI-SIM-HP					🍌 Nikon_MP_A1R			
NIKONSD					Nikon_Spinning_Disc			
👰 OPERA0109					퉬 Nikon_TiE_Twocamera			

Transfer Data To Shared Drive (3 of 3)

If you have trouble connecting to the shared drive, or need to re-map the network drive, please login to the booking system, go to documents, the 3rd document contains instructions.

At The End Of The Session...

More advanced instructions

...reuse previous camera settings

What if you are imaging similar samples and want to re-use camera settings you've optimised before...

- 1) In NIS Elements software, open a previous image with camera settings you want to mimic.
- 2) Right click on the image once it's open
- 3) Select reuse camera settings
- 4) Be aware, this uploads camera settings only, acquisition setting (Z-stack, large image etc.) will not be reloaded

Time measurement

Time measurement (found under the measurement tab) can be used after time-lapse imaging to determine the rate of sample bleaching or recovery.

Removing Background (Changes to ROIs can be implemented at workstations/FIJI after your session)

_ 3

46% -

- 📃

Make sure the stage is EMPTY before turning on the microscope switch at the right, far back.

Always put the toggle back to the RIGHT after you're done and before you start to focus.

Always LOWER the lenses as far as they can go before inserting the stage and/or clicking on another lens.

Always switch from COARSE to FINE when oil / water is in contact with lens.

Increase gain (HV) and laser power. (In SMALL INCREMENTS for green and red channels)

DO NOT increase gain (HV) for green and red channels to above 50 !!!

Acquisition panel XY positions: always DELETE ALL previous positions before you start !

DO NOT USE USBs on any computers in the microscope rooms!
If you need any help, please contact:

George Chennell (07771926760)

<u>or</u>

Chen Liang (07883166321) via WhatsApp

Happy Imaging!